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Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data,
several cellular automaton models for traffic flow are compared. We find three levels of agreement with the
empirical data:(1) models that do not reproduce even qualitatively the most important empirical observations,
(2) models that are on a macroscopic level in reasonable agreement with the empirics, and(3) models that
reproduce the empirical data on a microscopic level as well. Our results are not only relevant for applications,
but also shed light on the relevant interactions in traffic flow.

DOI: 10.1103/PhysRevE.70.016115 PACS number(s): 89.40.2a, 45.70.Vn, 02.50.Ey, 05.40.2a

I. INTRODUCTION

For a long time the modeling of traffic flow phenomena
was dominated by two theoretical approaches(for a review,
see e.g., Refs.[1–4]). The first type of models, the so-called
car-following models, are based on the fact that the behavior
of a driver is determined by the leading vehicle. This as-
sumption leads to dynamical velocity equations which in
general depend on the distance to the leading vehicles and on
the velocity difference between the leading and the following
vehicle. An alternative approach, which is also well estab-
lished in traffic research, does not treat the individual cars
but describes the dynamics of traffic networks in terms of
macroscopic variables. Here traffic flow phenomena are
treated in analogy to the dynamics of compressible viscous
fluids.

Both approaches are still widely used by traffic engineers,
but for practical purposes they are often not suitable. One of
the main problems of present car-following models(e.g., see
Refs. [5–9]) is that they are difficult to treat in computer
simulations of large networks. On the other hand also the
macroscopic approaches lead to some difficulties although
large networks can be treated in principle. First of all, present
macroscopic models use a large number of parameters which
have partly no counterpart within empirical investigations. In
addition to that, the information that can be obtained using
macroscopic models is incomplete in the sense that it is not
possible to trace individual cars.

In order to fill this gap cellular automaton(CA) models
have been invented[10,11]. CA models are microscopic
models which are by design well suited for large-scale com-
puter simulations. A comparison of the simulations with em-
pirical data shows that already very simple approaches give
meaningful results. In particular they can be used in order to
simulate dense networks such as cities[12] which are con-
trolled by the dynamics at the intersections. For highway
traffic, however, a more detailed description of the dynamics
seems to be necessary.

In this work we want to discuss the realism and the limi-
tations of a number of CA models. Our choice is restricted to
models that are discrete in space and time, which, e.g., ex-
cludes the approach by Krausset al. [13], and have local

interactions only, excluding models as the Galilei-invariant
model introduced in Ref.[14]. We compare simulations of
the CA model proposed by Nagel and Schreckenberg, that is
to date the most frequently used CA approach for traffic flow,
the VDR model[15] which realizes a so-called slow-to-start
rule, the TOCA-model of Brilonet al. [16], the model of
Emmerich and Rank[17] based on the use of velocity-gap
matrices, and the approach by Helbing and Schreckenberg
[18], which represents a model with a more sophisticated
distance rule. Finally we discuss the recently introduced
brake light model[19,20] that was suggested in order to give
a reliable reproduction of the microscopic empirics and the
model by Kerner, Klenov, and Wolf[21], focusing more on
the macroscopic properties of the three phases of traffic flow.

We will compare the ability of these models to reproduce
the empirical findings. This requires using a measurement
procedure in the simulations which models the detectors on
the highway. Analogous to the empirical setup of Ref.[22]
the simulation data are evaluated by a virtual inductive loop,
i.e., speed and time headway of the vehicles are measured at
a given link of the lattice. The measurement process is ap-
plied after the update of the velocity has been carried out, but
right before the movement of the vehicles. This implies that
the gap to the preceding vehicle does not change signifi-
cantly during the measurement. These simulation data are
analyzed regarding individual and aggregated quantities, as it
has been done in recent empirical investigations[22–24].

Although most of the empirical data sets have been col-
lected at multilane highways, we have performed our simu-
lations on a single-lane road in order to reduce the number of
adjustable parameters. This approach is justified because the
empirical data sets are selected such that multilane effects
are of minor importance. They might play a role for synchro-
nized traffic of types(i) and (ii ), as it has been recently
argued in Ref.[25], but in any case these types of synchro-
nized traffic are much rarely observed than synchronized
traffic of type (iii ) [22,24].

We will also not consider effects by a mixture of different
vehicle types, e.g., there are no trucks in our simulations.
The fraction of slow cars has not been determined from the
empirical data. Furthermore these data have been collected
on a highway with speed limit such that disorder effects
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through slower cars are expected to play a minor role. We
believe that inclusion of disorder will not change our results
qualitatively, but can lead to a better quantitative agreement
in some cases.

Before we start the analysis of the above mentioned CA
models, we will introduce an empirical test scenario. It will
be microscopic and local to make it easily comparable to
online data provided, e.g., by inductive loops. In contrast, the
detection of complex spatiotemporal structures[26] is more
difficult to achieve in an automated way. It would require the
investigation of interface dynamics whereas in our scenario
only bulk properties are studied. This test scenario also veri-
fies the reproduction of empirical traffic states on a micro-
scopic level, a task that cannot be fulfilled by macroscopic
models. The empirical results have been chosen with respect
to their reproducibility and the ability to distinguish between
the different states of traffic. This scenario will be discussed
in the following section.

II. EMPIRICAL FACTS

In order to probe the accuracy and the degree of realism
of the different models one has to introduce a test scenario
that includes the most important empirical findings. The dif-
ficulty in defining such a scenario is due to the fact that the
empirical results may depend strongly on the particular en-
vironment. Therefore one has to try to extract the results that
really characterize the behavior of the vehicles. As an addi-
tional difficulty mostly aggregated data have been analyzed
which are known to be largely dependent on the road condi-
tions, e.g., the capacity of an upstream bottleneck. A number
of results, however, is of general nature as we will discuss
below.

Even more conclusive are empirical investigations that
use single-vehicle data. These measurements can be com-
pared directly to the simulation results and include important
information concerning the microscopic structure of vehicu-
lar traffic. Unfortunately only a small number of empirical
investigations based on single-vehicle data exists so far. Our
discussion refers to the empirical studies of Refs.[22–24]. In
particular, in order to reduce the effects of disorder, the re-
sults of [22] (except for the time-headway distributions, see
below) are used for the comparison with simulation data.
These data have been collected on a highway where a speed
limit applies. This facilitates the comparison with modeling
approaches.

The empirical findings that are taken as a basis for the
comparison with the model results have been obtained from
inductive loops. Measurements by inductive loops, which
represent the most frequently used measurement devices,
give information about the number of cars passing, their ve-
locities and the occupation times. These direct measurements
are also used in order to calculate other quantities, e.g., the
spatial distancedn via dn=vn−1th (where vn−1 denotes the
velocity of the preceding carn−1, th the time headway be-
tween carn−1 and carn).

A. Temporally aggregated data

The most important empirical quantity is the relation be-
tween the averaged observables flow and density, i.e., the

fundamental diagram. There exists a longstanding contro-
versy (see, e.g., Refs.[26,27], and references therein) about
the “correct” functional form of the fundamental diagram
and a large number of possible forms have been suggested to
be compatible with empirical data[28]. A more consistent
picture was established after the work of Kerner and cowork-
ers who distinguished at least three different phases of traffic
flow [29], i.e., free flow, synchronized traffic, and wide jams,
which have to be analyzed separately. We will follow this
scheme and summarize the empirical findings accordingly.

Usually these measurements are stored as averaged values
of certain time intervals. We discuss results for the funda-
mental diagram, i.e., the flow density relation, in the different
traffic phases that are based on one-minute data. The results
for the functional form of the flow are shown, as far as pos-
sible, in dependence of the spatial densityrstd. The density
can be calculated from

rstd =
Jstd
vstd

, s1d

whereJstd denotes the number of cars passing the detector
with an average velocityvstd in the corresponding time in-
terval.

Free flow traffic is characterized by a large value of the
average speed. One basically observes two qualitatively dif-
ferent functional forms of the fundamental diagram, i.e., that
the linear regime extends up to the observed maximum of the
flow or that one has a finite curvature in particular for den-
sities slightly below the density of maximum flow[24,30].
The finite curvature is a consequence of an alignment of
speeds, i.e., close to the optimal flow it is no longer possible
to drive systematically faster than the trucks. This point of
view is supported by the empirical results taken from high-
ways where a quite restrictive speed limit is applied that can
be reached even by trucks[22].

In this case the whole free flow branch is linear. For our
purposes the linear form of the fundamental diagram is rel-
evant, because we use a single type of cars in the simula-
tions, with a maximal velocity that is given by the slope of
the free flow branch. When simulating a section of the high-
way where no speed limit is applied, one has to take a dis-
tribution of maximal speeds. This distribution can be ob-
tained from the empirical velocity distributions at very low
densities, where interactions between cars can be neglected.

In the congested regimeone distinguishes between syn-
chronized traffic and wide jams. In thesynchronized phase,
the mean velocity of the vehicles is reduced, compared to the
free flow, but the flow can take on values close to the maxi-
mum flow. Moreover, strong correlations between the density
on different lanes exist caused by lane changing.

The synchronized state has been subdivided into three
types, which differ in the characteristics of the time series of
density and flow: In synchronized traffic of type(i) constant
values of the density and the flow can be observed during a
long period of time. In synchronized traffic of type(ii ) the
flow depends linearly on the density similarly to free flow,
but the mean velocity is reduced considerably. In synchro-
nized traffic of type(iii ) irregular patterns of flow and den-
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sity can be observed(Fig. 1). In our paper we concentrate on
synchronized flow of type(iii ), because the two other types
of synchronized traffic have been rarely observed and it is
not confirmed whether they are generic phases of traffic flow.
An identification of synchronized traffic by means of the
fundamental diagram may be misleading, because the results
often depend on the averaging procedure. A more sensitive
check is to identify the different types of traffic states by
means of the cross-correlationccsr ,Jd of the densityr and
the flow J [22]:

ccsr,Jd =
krstdJst + tdl − krstdlkJst + tdl

ÎDrstdÎDJst + td
s2d

with DA=kA2l−kAl2 denoting the variance of the observable
A. The linear dependency of the flow and the density in the
free flow state as well as in the wide jam state leads to cross
correlations of<1, whereas irregular patterns of the flow and
the density in the synchronized traffic of type(iii ) lead to
cross correlations of<0.

It is worth pointing out that the notion of “synchronized
traffic” is still very controversial[26,27]. We emphasize
here, that we use anobjectivecriterion, namely, the vanish-
ing of the cross-correlation function(2) for the classification.
Within the empirical single-vehicle data sets available the
other two synchronized states could not be clearly identified.
Therefore it was not reasonable to include these states into
the test scenario. The characteristics of synchronized traffic
of type (iii ), however, have been clearly distinguished from
free flow and jammed states by the criterionccsr ,Jd<0.
Therefore any detailed model should be able to reproduce
this class of synchronized states.

Figure 1 includes a typical measurement of the fundamen-
tal diagram that correspond towide jams. Surprisingly these
measurements reveal quite small values of the density, al-
though the road is almost completely covered by cars. This
seemingly incorrect result is due to the local nature of the
measurement(see Ref.[22] for a detailed discussion). Thus,
the form of the fundamental diagram in the jammed state is
similar to free flow traffic, but with a small average velocity.

The jammed branch of the fundamental diagram is often
not reproduced by CA models, because they use the inverse
density of a jam in order to calibrate the unit of length.
Within these approaches jams are compact. In this case(al-
most) no internal flux is observed. The modeling of jams can
however be meaningful, if the upstream velocity and other
macroscopic characteristics of jam are reproduced.

B. Single-vehicle data

Nowadays some empirical studies exist that have ana-
lyzed single-vehicle data from counting loops[22–24]. These
studies are of great importance for the modeling of traffic
flow because they give direct information about the “micro-
scopic structure” of traffic streams. The data usually include
direct measurements of the time headways and the velocities
of the vehicles as well as the occupation time of the detector.
Similar to the time-averaged observables the results for the
microscopic quantities differ qualitatively in the different
phases.

The first quantity we look at is the time-headway
distribution,1 i.e., the time elapsing between two cars passing
the detector. This quantity is the microscopic analog to the
inverse flow. In free flow traffic it is found that the distribu-
tion at short times and also the position of the maximum is
independent of the density(Fig. 2).

The cut off at small time headways as well as thetypical
time headway in free flow traffic are important observables
which have to be reproduced by the microscopic models. The
exact shape of the distribution may also depend on the rela-
tive frequency of slow vehicles, because this determines the
fraction of interacting vehicles at a given density.

The time-headway distributions in synchronized traffic2

differ systematically from the free flow distributions(Fig. 3).
In synchronized traffic the distributions have a maximum
that is much broader than that in free flow traffic. The maxi-
mum is less pronounced and its position depends signifi-
cantly on the density.

In the presence of wide jams one has to distinguish be-
tween the jam itself and its outflow region. In the jam one

1Since the time-headway distribution of Ref.[22] in free flow as
well as in the synchronized state shows some peculiarities due to an
error of the measurement software[24], new measurements at the
same location have been conducted.

2Unfortunately, new measurements taken from the detector loca-
tion used in Ref.[22] do not provide a sufficient amount of data of
the synchronized state. Since the time-headway distributions of Ref.
[22] cannot be used, the distribution is calculated from data sets
taken from Ref.[24]. This is justified because the effects of a speed
limit can be neglected at larger densities.

FIG. 1. Time-traced fundamental diagram of the two congested
states(from Ref. [30]). Synchronized traffic is characterized by
strong fluctuations of the density and flow. The measurements for
wide jams are similar to measurements in free flow but with much
smaller average velocity.
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finds evidently a broad distribution of time headways, be-
cause cars are blocked for quite long times. In the outflow
region of a jam, however, one observes that the typical time
headway is of the order of,2 s.

The characteristics of traffic jams are one of the exten-
sively studied phenomena in traffic flow. Wide traffic jams
can be identified by a sharp drop of the velocity and the flow

to negligible values in the time series. Moreover traffic jams
move upstream with a surprisingly constant velocity(typi-
cally 15 km/h[31]). The upstream velocity is intimately re-
lated to the outflowJout from a jam which also takes on
constant values for a given situation. This allows for the
observed coexistence of jams. The coexistence is facilitated
because the outflow from a jam is considerably smaller than
the maximal flowJmax, such that no new jams emerge in the
outflow region of a jam. Empirically one observes the ratio
Jmax/Jout<1.5 [32]. The outflow and the upstream velocity
of a jam can therefore also be used to calibrate the model.
The precise data for the average upstream velocities andJout
may also serve to evaluate the average spacel that is occu-
pied by a car in a jam. Usuallyl, and not the average length
of the vehicles, represents the length of a cell in the CA
models.l may also be used to assign a reasonable value of
the velocity of cars in a jam, i.e.,vn= l / th.

The final test of the models comes from the velocity dis-
tance relation in the different traffic phases(Fig. 4). This
relation, also called optimal-velocity(OV) function, charac-
terizes in great detail the microscopic structure of the differ-
ent phases. Some models use OV curves directly as an input
[33]. In any case this quantity is a sensitive test concerning
the reproduction of the microscopic structure of highway
traffic. In the free flow regime the asymptotic velocity does
not depend on the density, but is given by the applied speed
limit. In the congested regime this asymptotic velocity is
much smaller than in free flow, i.e., cars are driving slower
than the distance headway allows. This is a direct effect of
the vehicle-vehicle interactions[22] and should therefore be
reproduced by any realistic traffic model.

III. SIMPLE STOCHASTIC CA MODELS

Throughout this paper we investigate microscopic traffic
models that are discrete in space and time. The discreteness

FIG. 2. Empirical time-headway distributions, i.e., the relative
frequency of a given time headway, in free flow traffic. The distri-
butions are normalized, i.e.,oPsthdDth=1. The data are classified in
different density regimes by the corresponding one-minute data of
the density. For a given road section one obtains a maximum that is
independent of the density and a minimal headway of 0.2 s.

FIG. 3. Same as Fig. 2 but for synchronized traffic. The func-
tional behavior of the distribution at short times depends on the
density.

FIG. 4. Empirical optimal-velocity(OV) functions, i.e., speed-
distance relations. The figure shows the mean velocity for a given
spatial distance in free flow and congested traffic for different
densities.
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of the model has the advantage of allowing direct and very
efficient computer simulations, and in particular without any
further discretization errors. The discreteness of the model,
however, also leads to some difficulties, in particular when
describing congested traffic, e.g., in congested traffic a con-
tinuous range of typical velocities exists that depend strongly
on the density. This velocity interval is mapped on a discrete
set of velocity variables. So even for an optimal reproduction
of the traffic state an upper limit for the accuracy of the
model exists. Therefore, one has to find a compromise be-
tween the degree of realism and the level of complexity by
choosing an appropriate discretization of the velocity.

Moreover, the temporal discretization introduces a char-
acteristic time scale. This time scale can be understood, if a
parallel update is applied, as the effective reaction time of
the drivers, which is included explicitly in car-following
models. Furthermore, the temporal discretization becomes
obvious as peaks in the measurement of the time headways
th. The finer the discretization the less pronounced the peaks.
In order to increase the resolution the time headways in the
simulations are calculated via the relationth=d/v with the
velocity v of the vehicle and the distance headwayd to the
preceding vehicle. Nevertheless, the minimal resolution is
restricted by the discretization that determines the minimalth
difference in free flowl /vmax with the lengthl and the maxi-
mum velocityvmax of a vehicle. In order to facilitate a com-
parison with the empirical time-headway distribution the dis-
tributions are normalized viaoPsthdDth=1.

Below we discuss a number of traffic models in detail and
with respect to their agreement with the empirical findings of
our test scenario. Beyond that we demand that each model
reproduces some basic phenomena, such as spontaneous jam
formation, and fulfills minimal conditions as, e.g., being free
of collisions. These conditions are generally understood as
fulfilled, if the opposite is not explicitly stated. In particular,
deterministic models(e.g., Refs.[34,35]) are not a subject of
this study. They cannot reproduce the spontaneous formation
of jams[11] which are the result of an inherent stochasticity
of traffic flow rather than a consequence of perturbations.

Our simulations are performed on a periodic single-lane
system. This simple structure of the system is in sharp con-
trast with realistic highway networks. It is nevertheless jus-
tified, because it has been shown for a large class of models
that different boundary conditionsselect different steady
states rather than changing their microscopic structure[36].
Therefore the boundary conditions are of great importance if
one tries to reproduce the spatiotemporal structure on a mac-
roscopic level. However, in comparison with local measure-
ments an appropriate traffic model should be able to repro-
duce the empirical results also if periodic boundary
conditions are applied. Furthermore the restriction to a single
lane is of minor importance for the empirical test scenario
which has been discussed in the preceding section. In the
simulations system sizes ofLù10 000 cells have been used
which is sufficient to reduce finite-size effects. Typical runs
used 50 000 time steps to reach the stationary state and mea-
surements.

We also want to emphasize that for each model all simu-
lations have been performed with asingleset of parameters.
Some of the model parameters can be directly related to a

given empirical quantity. In this case we have chosen the
value that leads to an optimal agreement with the related
observable to avoid ranking the importance of the empirical
findings. For a particular application of the model, however,
the reproduction of a certain quantity might be of special
interest and therefore a calibration of the model different
from ours might be more appropriate.

A. The CA model of Nagel and Schreckenberg

The model introduced by Nagel and Schreckenberg[10]
(hereafter cited as “NaSch model”) is the prototype of mi-
croscopic models that we discuss. The important role of this
model is mainly due to its simplicity which allows for very
fast implementations. In fact the NaSch model is a minimal
model in the sense that every further simplification leads to a
loss of realism. We will also use it as a reference for other
models that will be introduced by giving the relation to the
NaSch model.

The NaSch model is a discrete model for traffic flow. The
road is divided into cells that can be either empty or occu-
pied by carn with a velocity vn=0,1, . . . ,vmax. Cars move
from the left to the right on a lane with periodic boundary
conditions and the system update is performed in parallel.

For completeness we repeat the definition of the model
that is given by the four following rulesst, t1, t2, t+1d:
(1) acceleration:vnst1d=minhvnstd+1,vmaxj, (2) deceleration:
vnst2d=minhvnst1d ,dnstdj (3) randomization: vnst+1d
=maxhvnst2d−1,0j with probability pdec [otherwisevnst+1d
=vnst2d] (4) motion: xnst+1d=xnstd+vnst+1d with the veloc-
ity vn, the maximum velocityvmax, and the positionxn of car
ndnstd specifing the number of empty cells in front of carn at
time t.

For a given discretization the model can be tuned simply
by varying the two parametersvmax and pdec. The value of
vmax mainly affects the slope of the fundamental diagram in
the free flow regime while the behavior in the congested
regime is controlled by the braking noisepdec. Each time step
Dt corresponds to 1.2 s in reality in order to reproduce the
empirical jam velocity at a given cell length of 7.5 m. The
length of a cell corresponds to the average space occupied by
a vehicle in a jam, i.e., its length and the distance to the next
vehicle ahead. This choice is in accordance with measure-
ments at German highways on the left and middle lane,
where the density of trucks is low[32]. Due to the parallel
update an implicit reaction time is introduced which has to
be considered when choosing the unit of time. This time is
not the reaction time of the driver(that would be much
shorter) but the time between the stimulus and the actual
reaction of the vehicle. The value we have chosen allows us
to reproduce the typical upstream velocity of a jam.

We tune the two free parameters of the model by adjust-
ing the slope in the free flow regime and the maximum of the
fundamental diagram. Figure 5 shows the resulting funda-
mental diagram usingvmax=112 km/h=5cells/ timestep and
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pdec=0.16 which has to be compared with the empirical re-
sults.

By tuning the parameters we could reproduce quite well
the free flow branch of the fundamental diagram: Both, the
slope as well as the maximum is in agreement with the em-
pirical findings. For congested traffic, however, the model
fails to reproduce the two distinct phases, in particular the
characteristics of synchronized traffic are not matched. This
interpretation of the flow data is supported by measurements
of the cross-correlation function that is negative in the cor-
responding density regime. In the presence of wide jams the
flow is proportional to the densities as found by empirical
observation. But also for wide jams differences exist. In real
measurements the branch extends up to quite large densities
s,70 vehicles/kmd, while the simulation results are re-
stricted to lower densitiess,40 vehicles/kmd.

Next we discuss the model on a microscopic level. As
mentioned above the upstream velocity of wide jams can be
tuned by choosing the appropriate discretizationDt of the
time. We have verified our calibration by initializing the sys-
tem by a large jam and measuring the velocity of the up-
stream propagation of the jam front. As expected our result is
in agreement with the empirical data. Nevertheless, the dy-
namics of jams in the NaSch model is in contradiction to
empirical findings since its outflow from a jam equals the
maximal possible flow. This implies that the observed paral-
lel propagation of jams cannot be reproduced by the NaSch
model.

The time-headway distributions of the NaSch model(see
also Ref.[37]) also mismatch with empirical data(Fig. 6).
Due to the discreteness of the model and the unique maximal

velocity of the cars the distribution function has a peaked
structure.3

But more important than that is the absence of time head-
ways shorter than the chosen unit of time. This implies that
we cannot reproduce the cut off at short times and the up-
stream velocity of jams at the same time.

Finally, we also discuss the optimal velocity curves of the
model(Fig. 7). In congested traffic one observes only a very
weak dependence of the “optimal velocity” on the density.
This is due to the short range of interactions in the model and
the strong acceleration of the cars. So we neither observe a
significant density dependence nor a sensitivity to the traffic
state. This is a serious contradiction to the empirical findings,
related to an incomplete description of the microscopic struc-
ture of the model.

B. VDR model

A step towards a more realistic CA model of traffic flow
was done by the so-called velocity-dependent-randomization
(VDR) model [15] that extends slightly the set of update
rules of the NaSch model. In this model, a velocity-
dependent randomizationpdecsvd is introduced that is calcu-
lated before application of step 1 of the NaSch model. As

3The time-headway distributions have a resolution that is finer
than the unit of time, which was assigned to an update step. This is
possible because we calculate the exact passing time of the car from
its position and velocity after executing the time step. An example
of a direct measurement of time headways can be found in Ref.
[37].

FIG. 5. Local fundamental diagram of the NaSch model for
vmax=112 km/h=5cells/Dt, Dt=1.2 s andpdec=0.16. A cell has a
length of 7.5 m.

FIG. 6. Normalized time-headway distribution of the NaSch
model in free flow and congested traffic for different densities.
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simplest version, a differentpdec for cars withv=0 was stud-
ied,

pdecsvd = Hp0 for v = 0

p for v . 0
s3d

with p0.p (slow-to-start rule).
The additional rule of the VDR model has been intro-

duced in order to reproduce hysteresis effects. This is indeed
possible, because the new parameterp0 allows to tune the
velocity and outflow of wide jams separately. As a side effect
it is now possible to reproduce the observed short time head-
ways by keeping the unit of time smalland the empirical
observed downstream velocity of jams. The parameters of
the model were chosen in the following way: The unit of
time was adjusted in order to match the position of the maxi-
mum of the time-headway distribution. Then we have chosen
the parameterp0 such that we could reproduce the measure-
ments of the upstream velocity of a jam. Finally the values of
vmax andp ensure a good agreement in the free flow branch.
The behavior found in the VDR model is typical for models
with slow-to-start rules[38,39].

Figure 8 shows the local fundamental diagram of the
VDR model. For the parameter values obtained by the above
procedure only very weak hysteresis effects are observed.
Obviously the model fails to reproduce the empirically ob-
served congested phase correctly. Compared to the NaSch
model the mismatch of the fundamental diagram in the con-
gested regime is even more serious, i.e., we cannot identify
at all a density regime as synchronized traffic. The reason for
this is a stronger separation between free flow and wide
jams, which are compact. Therefore one does not observe
any flow within a jam if a stationary state of a periodic sys-
tem is analyzed. In case of open boundary conditions a slight
broadening of the free-flow branch has been observed, if the

detector is located close to the exit of the highway section.
This effect is due to the smaller length scale of jams close to
the exit, which leads to a larger weight of accelerating cars.
Due to the coarsening of the jam size this effect vanishes in
the bulk of the system[40,41].

But in any case, this way of generating synchronized
states by the boundary conditions does not agree with the
empirical situation, because one cannot reproduce the large
spatial and temporal extension of the synchronized state. The
missing synchronized traffic phase leads to quite large posi-
tive values of the cross correlationccsJ,rd of the density and
the flow.

FIG. 7. OV function in free flow and congested traffic of the
NaSch model for different densities.

FIG. 8. Local fundamental diagram of the VDR model for
vmax=108 km/h=3cells/Dt, Dt=0.75 s,p0=0.58, andp=0.16.

FIG. 9. Normalized time-headway distribution of the VDR
model in free flow and congested traffic for different densities.
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The time-headway distribution of the VDR model differs
in two points from the empirical observations(Fig. 9). (i)
The unit of time is a sharp cut off, i.e., the short time char-
acteristics of the time-headway distribution is not in agree-
ment with the empirical findings.(ii ) We do not observe a
density dependence of the maximum in congested traffic.
Similar results are obtained for the OV functions, that do not
depend on the density or the traffic state(Fig. 10). This result
is a consequence of the microscopic structure of high density
states. At large densities compact wide jams and zones of
free flow traffic coexist, separated by a narrow transition
layer. Now, our virtual “detector” measures only moving cars
and therefore almost freely moving cars even at large densi-
ties.

The major achievement of the VDR model is the correct
description of the dynamics of wide jams which is similar to
the so-called local cluster effect[42] found in hydrodynami-
cal models. The outflow from a jam is lower than the maxi-
mal flow, and therefore jams do not emerge in the outflow
region. This effect leads to the increased stability of jams,
including the empirically observed parallel upstream motion
of two jams.

The analysis of the VDR model showed even more clearly
the effect of a missing synchronized traffic phase. While in
the NaSch model the density can be chosen such that a scat-
tered structure in the fundamental diagram appears, we ob-
tain rather pure free flow states and wide jams for the VDR
model. Contrary the VDR model gives a much better de-
scription of the dynamics of jams. In contrast to the NaSch
model, the VDR model is able to reproduce, e.g., the parallel
motion of coexisting jams[40,41]. Although this phenom-
enon is rarely observed it should be reproduced by a realistic
traffic model, because it is a sensitive for the correct descrip-
tion of the motion of jams. In case of the NaSch model this
pattern is not observed, because new jams can form in the
downstream direction of a jam.

C. The time-oriented CA model

Based on the CA model of Nagel and Schreckenberg,
Brilon et al. [16] proposed a time-oriented CA model(here-
after cited as TOCA) that increases the interaction horizon of
the NaSch model(where cars interact only fordøv) and
therefore changes the car-following behavior.

Compared to the NaSch model the acceleration step is
modified, i.e., a car accelerates only if its temporal headway
th=dstd /vstd is larger than some safe time headwayts. But
even for sufficiently large headways the acceleration of a
vehicle is not deterministic, but is applied with probability
pac. As a second modification also the randomization step is
modified, i.e., it is performed only for cars moving with short
time headwayssth, tsd. The limited interaction radius of this
third step leads, for a given value ofpdec, to a reduction of
the spontaneous jam formation.

The update rules then read as followsst, t1, t2, t+1d:
(1) if sth. tsd thenvnst1d=minhvnstd+1,vmaxj with probabil-
ity pac, (2) vnst2d=minhvnst1d ,dnstdj, (3) if sth, tsd thenvnst
+1d=maxhvnst2d−1,0j with probability pdec, (4) xnst+1d
=xnstd+vnst+1d with ts=1.2,pac=0.9 andpdec=0.9 [16]. For
the comparison with the NaSch and VDR model we use
vmax=4.

With this choice ofts the update rules can be simplified
for vmaxø4, because of the discrete nature of the model:(1)
vnst1d=minhvnstd+1,vmaxj with probability pac, (2) vnst2d
=minhvnst1d ,dnstdj, (3) if svnst+1dødnstdd vnst+1d
=maxhdnstd−1,0j with probability pdec, (4) xnst+1d=xnstd
+vnst+1d.

As expected for this parametrization of the model we ob-
tain results for the fundamental diagram that are similar to
the NaSch model(Fig. 11).

The absence of spontaneous velocity fluctuations at low
densities, however, implies thatpdec has to be chosen quite

FIG. 10. OV function of the VDR model in free flow and con-
gested traffic for different densities.

FIG. 11. Fundamental diagram of the TOCA model. As discreti-
zation we used a cell length of 7.5 m and a time-step corresponding
to Dt=1 s in reality. The parameters of the model are chosen asts
=1.2, pac=pdec=0.9 andvmax=4 cells/Dt=108 km/h.
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large in order to obtain realistic values of the maximal flow.
At the same time large values of the braking probability lead
to the formation of jams at low densities, such that it is
difficult to obtain density fluctuations with amplitudes com-
parable to the empirically observed values.

The time-headway distributions of the TOCA model,
however, differ significantly from the results of the NaSch
model (Fig. 12). For free flow traffic the position of the
maximum is different from the minimal time headway for
the chosen set of parameters. The maximum coincides with
th while the minimal time headway is determined by the unit
of time. For congested traffic the distribution has two
maxima, one corresponding to the typical time headway in
free flow traffic and the other corresponding to the typical
temporal distance in the outflow region of a jam.

The OV functions of the TOCA and the NaSch model
differ in two respects(Fig. 13). (i) Due to the fact that the
randomization step is applied for a finite range of the inter-
actions, all cars move deterministically withvmax at low den-
sities and therefore spatial headways smaller thanvmax cells
are completely avoided. This result is at least partly a conse-
quence of our simulation setup, i.e., choosing exactly the
same maximal velocity for every car.(ii ) The second differ-
ence is found in the density dependence of the OV function
for congested traffic. Because of the retarded acceleration in
step 1 and the deceleration of vehicles withvød, at very
large densities the system contains only one large jam with a
width comparable to the system size. As a consequence, the
mean velocity at a given distance is reduced considerably
compared to free flow. The transition to a completely
jammed system occurs at densities of about 66 vehicles/km
and leads to the abrupt change of the OV curve.

The main difference between the NaSch model and the
TOCA approach is the structure of jams. Due to the restricted
application of the randomization step,pdec must be quite

large in order to obtain reasonable results for the fundamen-
tal diagram. Such a choice ofpdec, however, reduces signifi-
cantly the density of jams. This implies that, although the
typical time headway in the outflow region of a jam has the
correct value, the downstream velocity of jams is too large.

Our analysis revealed several shortcomings of the TOCA
model. However, we believe that the TOCA model is an
interesting advancement of the NaSch model if a finer spatial
discretization is applied. We will illustrate this for the ex-
ample of the density of a wide jam: The inverse density of
wide jams was used in order to fix the size of a cell. This
choice is correct, as the jams in the model are basically com-
pact, which is not true in case of the TOCA model. In this
case more accurate results could be obtained if each cell
would be divided into three cells. Using this finer discretiza-
tion cars occupy two cells which would finally lead to a quite
realistic dynamics of jams. A more elaborate discussion of
the discretization effects can be found in Appendix A.

IV. CA MODELS WITH MODIFIED DISTANCE RULES

A. The model of Emmerich & Rank

The CA model introduced by Emmerich and Rank[17]
(ER model) is another variant of the NaSch model with an
enhanced interaction radius. Precisely speaking the braking
rule of the NaSch model is replaced by applying a velocity
dependent safety rule that is implemented via a gap-velocity
matrix M. The entriesMij of M denote the allowed velocities
for a car with gapi and velocityj . Replacing the braking rule
Mij ø j holds because otherwise the car would accelerate. For
the NaSch model the elements of the gap-velocity matrix
MsNaSchd simply readMij =minhi , jj.

Emmerich and Rank tried to improve the NaSch model by
introducing a larger interaction horizon, i.e., by an earlier

FIG. 12. Normalized time-headway distribution for the TOCA
model in free flow and congested traffic for different densities.

FIG. 13. OV functions of the TOCA model in free flow and
congested traffic for different densities.
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adaption of the speed. This partly avoids the unrealistic ef-
fect, that drivers stop from a high speed within one time step.
Compared to the NaSch model their choice of the matrixM
only modifies the distance rule for cars moving with velocity
vmax: If 4 ødø9 the carn has to slow down to velocity 4.
For all other combinations ofd and v the NaSch distance
rule is left unchanged.

As a second modification of the NaSch model a different
update scheme is applied. The ER model uses an unusual
variant of the ordered sequential update, i.e., all rules, in-
cluding the movement of the vehicles, are directly applied
for the chosen car. A unit of time corresponds to one update
of all cars. Ordered sequential updates use normally a fixed
sequence of cars or lattice sites. This has the disadvantage
that some observables, e.g., the typical headway, may depend
on the position of the detection device, even for periodic
systems. In order to reduce this effect the car with the largest
gap is chosen first and than the update propagates against the
driving direction[17].

As a consequence of the ordered sequential update
scheme, the gaps are used very efficiently and very large
flows can be achieved[43]. (Now, it is allowed that two cars
are driven withvmax andd=0, so that flowsJ.1 vehicle/Dt
are possible.) Therefore large deceleration probabilities are
necessary to decrease the overall flow to realistic values.
Nevertheless, due to the sequential update scheme, the spon-
taneous jam formation is reduced considerably. The applica-
tion of a sequential update is crucial. If it is replaced, e.g., by
a parallel update, one may observe an unrealistic form, i.e., a
nonmonotonous behavior, of the fundamental diagram at low
densities[1].

Due to the special choice ofMsERd, the velocity of cars
with dø9 is restricted tovø4. This means, that a generic
speed limit with vmax=4 is applied for all densitiesr
ù1/11<12 vehicles/km, where the mean distance between

the cars is smaller than 10 cells. Therefore, the free flow
branch of the fundamental diagram in Fig. 14 has in contrast
to the empirical data two different slopes, one corresponding
to vmax=5 cells/Dt if r,15 vehicles/km and the other to
vmax=5 cells/Dt at larger densities.

For the present choice ofM we recover basically the dis-
tance rule of the NaSch model withvmax=4 cells/Dt, be-
cause the speed limit applies only for larger distances. There-
fore the structure of the congested part of the fundamental
diagram is quite similar to the NaSch model. However, im-
portant differences concerning the microscopic structure of
the traffic state exist, mainly due to the modified update
scheme. The ordered sequential update allows motion at high
speeds and small distances. This could in principle(for small
pdec) lead to very short time headways. For the chosen value
of pdec, however, the typical time headways are quite large in
the free flow regime and do not match the empirical findings.
Nevertheless, the ordered sequential update changes qualita-
tively the form of the time-headway distribution, i.e., the
position of the maximum and the short time cut off are dif-
ferent, as empirically observed(Fig. 15).

The OV function of the ER model differs strongly from
the empirical findings(Fig. 16). For this quantity the modi-
fied distance rule is of great importance. In the congested
regime, we observe plateaus of almost constant average ve-
locitiesv,vmax. The density dependence of the OV function
is, as for the NaSch model, very weak. In free flow traffic
small headways simply have not been observed, in contra-
diction to the empirical results.

The most important weakness of the ER model is its de-
scription of the jam dynamics. First of all for small values of
pdec the possibility of downstream moving jams exist, which
contradicts all empirical studies. But even for the large value
of pdec we applied, jams are not stable, i.e., often branch into
a number of small jams. Therefore it is impossible to repro-

FIG. 14. Fundamental diagram of the ER model. As suggested
in the original work we have chosen 7.5 m as the length of a cell,
Dt=1 s,pdec=0.3 andvmax=5=135 km/h.

FIG. 15. Normalized time-headway distribution for the ER
model in free flow and congested traffic for different densities.
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duce the empirically observed parallel moving jams with the
ER model.

In summary, the gap-velocity matrix allows for a more
detailed modeling of the interaction horizon. But keeping the
parallel update scheme, unrealistic behavior at low densities
is observed. Using a special variant of the sequential update
leads to a very unrealistic structure of the microscopic traffic
states.

B. A discrete optimal velocity model

Helbing and Schreckenberg(HS) [18] have introduced a
CA model for the description of highway traffic based on the
discretization of the OV model of Bandoet al. [33]. The
model was introduced in order to provide an alternative
mechanism of jam formation. In certain density regimes the
HS model is very sensitive to external perturbations due to
its intrinsic nonlinearity. So in contrast to the previous ap-
proaches the pattern formation is of chaotic rather than of
stochastic nature, although the definition of the model in-
cludes a stochastic part as well.

The deterministic part of the velocity update is done by
assigning the following velocity to the cars:

vnst + 1/2d = vnstd + blfVoptsdnd − vnstdgc, s4d

whereVoptsdd denotes the “optimal” velocity of carn for a
given distancedn to the vehicle ahead,vnstd the discrete ve-
locity at time t and b¯c the floor function. The constantl is
a free parameter of the model.4 The acceleration step is the
naive discretization of the acceleration step of the space and

time continuous OV model. In the continuous version of the
OV model the parameterl determines the time scale of the
acceleration. However, for time-discrete models it is well
known that a simple rescaling of time is not possible. There-
fore the meaning of the parameterl remains unclear.

The deterministic update is followed by a randomization
step as known from the NaSch model, i.e., the velocity of a
car with vnst+1/2d.0 is reduced with probability by one
unit.

Although the definition of the model seems to be quite
similar to the models discussed in the preceding sections,
important differences exist. In all other models discussed so
far acceleration is limited to one velocity unit per time step
while breaking fromvmax to zero velocity is possible. This is
not true for the HS model where a standing car may accel-
erate towardsblVopts`dc.1 in a single time step. On the
other hand, in particular for small values ofl, the braking
capacity of cars is reduced. A reduced braking capacity, how-
ever, may lead to accidents(see the discussion in Refs.
[13,44,45]), a certainly unwanted feature of a traffic model.
It also implies that the model is not defined completely by
the dynamics. This becomes a problem especially in simula-
tions. Here further rules are necessary to determine how to
deal with accidents.

We will discuss the possibility of accidents in some more
detail in Appendix B. This discussion concentrates on a cri-
terion which ensures that forany possible initial conditionno
accident occurs.

In Ref. [18] for comparison with empirical data the fol-
lowing OV function is suggested:

dfDxg OVsddfDx/Dtg dfDxg OVsddfDx/Dtg

0,1 0 11 8

2,3 1 12 9

4,5 2 13 10

6 3 14,15 11

7 4 16–18 12

8 5 19–23 13

9 6 24–36 14

10 7 ù37 15

The length of a cell is set toDx=2.5 m,Dt=1 is chosen as
the unit of time,l= 1

1.3 and we used the randomization prob-
ability pdec=0.001 as suggested in Ref.[18]. A vehicle has a
length of l =2 cells corresponding to 5 m. For this choice of
l and the OV function the model is not strictly free of col-
lisions as our discussion in the appendix shows, but at the
same time it does not lead to accidents if an appropriate
initial condition is chosen and the density is not too high.

The optimal velocity function that governs the determin-
istic part of the vehicle dynamics, leads to speed limits in
certain density regimesl / sdmax+ ld,r, l / sdmin+ ld with
Voptsdmind=Voptsdmaxd. These different optimal speeds be-
come visible in different slopes in the free flow branch of the
fundamental diagram(Fig. 17). For congested traffic two dif-
ferent traffic regimes can be identified, as empirically ob-
served. For very high densities, one observes a reasonable
agreement with the empirical data, i.e., the form of the

4In contrast to the original work we consider here only the case of
one type of cars. Furthermore we denote the OV function byVopt so
that it can be better distinguished from the velocities of the cars.

FIG. 16. OV function of the ER model in free flow and con-
gested traffic for different densities.
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jammed branch is reproduced qualitatively. This branch of
the fundamental diagram is, however, observed only in a
very narrow interval of global densities.

Compared to the two other traffic states the reproduction
of synchronized traffic is rather poor. First, one obviously
observes a strong correlation between density and flow,
which is contrast to the empirical findings, and second, the
range of densities which is observed in local measurements
is quite narrow.

The main difficulties of the model are visible when com-
paring it with empirical results on a microscopic level. The
simulations for the time-headway distribution(Fig. 18) show
a strong density dependence of the maximum for the free
flow states. This is due to the long-ranged interactions that
tend to generate traffic states that are very homogeneous.
Therefore short time headways are suppressed at low densi-
ties. The second problem is the quasideterministic character
of the model. This implies that drivers obey the distance rule
in almost any case. As a result the peak values of the time
headway distribution have extremely high weights. In con-
gested traffic we observe a density independent position of
the maximum of the time-headway distribution. The maxi-
mum carries almost the whole weight of the distribution, in
contradiction to the empirical findings. The reason for this
can be read off from the distance headway distributions for
different global densities(Fig. 19). Within a large density
regime we observe coexistence of noncompact jams and free
flow traffic. Therefore we can state that both high density
states correspond to stop-and-go traffic, i.e., the model fails
to reproduce synchronised traffic at all.

The mismatch of the model and empirical structure of
traffic states is also obvious for the OV function(Fig. 20). It
shows almost no density dependence and is basically inde-
pendent of the traffic state. The difference between the dif-
ferent curves is only in a density dependent cut off of the
distribution, i.e., at high densities large distances simply do
not occur.

The simulations show that HS model fails to reproduce
the microscopic structure of the empirical observed traffic
states. From our point of view the problems describing the
empirical observation are due to the nature of the model. It
introduces a static rule that leads to a reasonable agreement
with the empirical fundamental diagram. For a proper choice
of l the vehicles take instantaneously a velocity close to the

FIG. 17. Fundamental diagram of the HS model. As suggested
in the original work we have chosen 2.5 m as the length of a cell, a
vehicle has a length of 2 cells,Dt=1 s, pdec=0.001, vmax=15
=135 km/h andl=1/1.3.

FIG. 18. Normalized time-headway distribution for the HS
model in free flow and congested traffic for different densities.

FIG. 19. Distance headway distributions in the congested re-
gime. Obviously noncompact jams coexist with free flow regimes,
where the distance between two cars is rather large.
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optimal velocity, i.e., the dynamical aspects of highway traf-
fic are extremely simplified. Therefore inhomogeneous traf-
fic states are only observed in the presence of quenched dis-
order [18], e.g., different types of cars, and not produced
spontaneously.

V. BRAKE LIGHT VERSION OF THE NASCH MODEL

Quite recently a brake light(BL) version of the NaSch
model has been introduced[19,20] in order to give a more
complete description of the empirically observed phenomena
in highway traffic. In contrast to the models we considered in
the preceding sections, which represent already well-known
modeling approaches, we also discuss the basic features of
the model that have not been presented so far. In the devel-
opment of the model the main aim was the reproduction of
the empirical microscopic data in a robust way.

A. Definition of the BL model

The BL model combines several elements of older mod-
eling approaches, e.g., velocity anticipation[46,47] and a
slow-to-start rule[15,39]. In addition, a dynamical long-
ranged interaction is included: In their velocity dependent
interaction horizon drivers react on brakings of the leading
vehicle that are indicated by an activated brake light[48].
The interaction, however, is limited to nearest neighbor ve-
hicles[49]. The update rules are formulated in analogy to the
VDR model. In particular the interactions are strictly local
and a parallel update scheme is applied.

In order to allow for a finer spatial discretization for a
given length of a car, we include the possibility that a car
may occupy more than a single cell. Therefore the gap be-
tween consecutive cars is given bydn=xn+1−xn− l (wherel is
the length of the cars). The brake lightbn can take on two
states, i.e., on(off) indicated bybn=1s0d. In our approach

the randomization parameterpdec for the nth car can take on
three different valuesp0, pd, andpb, depending on its current
velocity vnstd and the statusbn+1 of the brake light of the
preceding vehiclen+1:

pdec= pdecsvnstd,bn+1std,th,tsd

= 5pb if bn+1 = 1 and th , ts
p0 if vn = 0

pd in all other cases.

s5d

The two timesth=dn/vnstd and ts=minhvnstd ,hj, whereh
determines the range of interaction with the brake light, are
the timeth needed to reach the position of the leading vehicle
which has to be compared with a velocity-dependent(tem-
poral) interaction horizontsts introduces a cutoff that pre-
vents drivers from reacting to the brake light of a predecessor
which is very far away. Finally dn

seffd=dn+maxhvanti

−dsecurity,0j denotes the effective gap where vanti

=minhdn+1,vn+1j is the expected velocity of the leading ve-
hicle in the next time step. The effectiveness of the anticipa-
tion is controlled by the parameterdsecurity. Accidents are
avoided only if the constraintdsecurityù1 is fulfilled. The
update rules then are as followsst, t1, t2, t+1d:

(0) Determination of the randomization parameter:
pdec=pdecfvnstd ,bn+1std ,th,tsg
bnst+1d=0.

(1) Acceleration:
if hfbn+1std=0g andfbnstd=0gj or sthù tsd then

vnst1d=minhvnstd+1,vmaxj.
(2) Braking rule:

vnst2d=minhdn
seffd ,vnst1dj if fvnst2d,vnstdg then

bnst+1d=1.
(3) Randomization, brake:

if frandsd,pdecg then
hvnst+1d=maxhvnst2d−1,0j
if hspdec=pbd andfvnst+1d=vnst2d−1dgj then

bnst+1d=1j
(4) Car motion:

xnst+1d=xnstd+vnst+1d.
Here randsd denotes a uniformly distributed random num-

ber from the intervalf0,1g.
The new velocity of the vehicles is determined by steps

1–3, while, step 0 determines the dynamical parameters of
the model. Finally, the position of the car is shifted in accor-
dance with the calculated velocity in step 4.

In order to illustrate the details of the approach we now
discuss the update rules step wise.

(0) The braking parameterpdec is calculated. For a
stopped car the valuepdec=p0 is applied. Thereforep0 deter-
mines the upstream velocity of the downstream front of a
jam.

If the brake light of the car in front is switched on and it
is found within the interaction horizonpdec=pb is chosen. A
car perceives a brake light of the vehicle ahead within a
time-dependent interaction horizonts=minhvnstd ,hj, where
vnstd is the current velocity andh an integer constant. The
velocity dependence takes into account the increased atten-

FIG. 20. OV function of the HS model in free flow and con-
gested traffic for different densities.
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tion of the driver at large and reduces the braking readiness
at small velocities. This reaction is performed only with a
certain probability ofpb. In order to obtain a finite range of
interactions a cutoff at a horizon ofh seconds is made.5

Finally, pdec=pd is chosen in all other cases.
(1) The velocity of the car is increased by one unit(if it

does not already move with maximum velocity). The car
does not accelerate if its own brake light or that of its pre-
decessor is on and the next car ahead is within the interaction
horizon.

(2) The velocity of the car is adjusted according to the
effective gap.

The brake light of a vehicle is activated only if the new
velocity is reduced compared to the preceding time step.
Note that the application of the braking rule does not neces-
sarily lead to a change of the velocity, as it can compensate a
previous acceleration. The restriction stabilizes dense traffic
flows.

(3) The velocity of the car is reduced by one unit with a
certain probability pdec=pdecfvnstd ,bn+1,th,tsg. If the car
brakes due to the predecessor’s brake light, its own brake
light is switched on. We also stress the fact that even for
distancesdn,h the action of the brake light is restricted to
brakings that are induced by the vehicle in front(either by
the braking rule or by an activated brake light) and not by
spontaneous velocity fluctuations.

(4) The position of the car is updated.

B. Calibration of the model

The following parameters of the model allow one to ad-
just the simulation data to the empirical findings: the maxi-
mal velocityvmax, the car lengthl, the braking parameterspd,
pb, p0, the cutoffh of interactions, and the minimal security
gap dsecurity. The parameters of the have been chosen such
that they can easily be related to the empirical findings. As in
the previous models a single set of parameters is used for all
traffic states.

In order to obtain realistic values of the acceleration be-
havior of a vehicle, the cell length of the standard CA model
is reduced to a lengthl of 1.5 m. Since the time step is kept
fixed at a value of 1 s this leads to a velocity discretization of
1.5 m/s which is of the same order as the “comfortable”
acceleration of somewhere about 1 m/s2 [50]. Like in the
standard CA model a vehicle has a length of 7.5 m that cor-
responds to 5 cells at the given discretization(see Appendix
A for a discussion of the discretization effects).

Some of the parameters can be fixed as, e.g., in the VDR
model: The maximum velocityvmax is determined by the

slope of the free flow branch of the fundamental diagram.
The upstream velocity of a jam can be tuned by the param-
eterp0 and the strength of fluctuations that are controlled by
the parameterpd determine the maximal flow.

The other parameters of the model are connected with an
interaction that have not been included in the models we
discussed so far. The parameterh describes the horizon
above which driving is not influenced by the leading vehicle.
Several empirical studies reveal thath corresponds to atem-
poral headway rather than to a spatial one. The estimates for
h vary from 6 s [51], 8 s [52,53], 9 s [54] to 11 s [55].
Another estimation forh can be obtained from the analysis
of the perception sight distance. The perception sight dis-
tance is based on the first perception of an object in the
visual field at which the driver perceives movement(angular
velocity). In Ref. [56] velocity-dependent perception sight
distances are presented that, for velocities up to 128 km/h,
are larger than 9 s. We therefore have chosenh to be 6 s as
a lower bound for the time headway. Besides, our simula-
tions show that a good agreement with empirical data can
only be obtained forhù6. This corresponds to a maximum
horizon of 6320 cells or a distance of 180 m at velocity
vmax.

The next parameter one has to fix ispb. This parameter
controls the propagation of the brake light. A braking car in
front is indeed a strong stimulus to adjust the own speed.
Thereforepb has typically a high value. Finally,dsecuritytunes
the degree of the velocity anticipation and has a strong in-
fluence on the cut-off of the time-headway distribution.

C. Validation of the full model

With this parameter set we have calibrated the model to
the empirical data. Leavingp0, h andvmax fixed, we got the

5Indeed, increasingpdec to pb is the simplest possible response to
the stimulus brake light. More sophisticated response functions
such as a direct reduction of the velocity or the gap are conceivable
but lead to some problems in combination with anticipation. In
addition, one can think of different implementations of the brake
noise pb, for example, we have tried more sophisticatedpb func-
tions, such as a linear relationship betweenpb and the velocity, the
difference velocity to the predecessor or the gap, but for the sake of
simplicity in this paper we well focus on a constantpb.

FIG. 21. Local fundamental diagram obtained by the simulation
of the brake light version of the NaSch model. The parameters are:
p0=0.5,h=6, vmax=20, pdec=0.1, pb=0.94,dsecurity=7. A time step
corresponds toDt=1 s, a cell has a lengthl =1.5 m and a vehicle
covers 5 cells.
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best agreement with the empirical data forpdec=0.1, pb
=0.94, anddsecurity=7.

As one can see in Fig. 21 the slope of the free flow branch
and the maximum flow coincides with the empirical data
indicating thatvmax andpdec have been chosen properly.

However, the simulated densities are less distributed than
in the empirical data set. The width of the density distribu-
tion is of the same order as it was found for the NaSch and
ER model. The mismatch between simulation and empirical
results of the density can be related to discretization effects,
which introduce an upper limit for the density if simple(vir-
tual) counting loops are used as detection devices.

A second lower branch appears for small values of the
flow which represents wide jams. Because only moving cars
are measured by the inductive loop large densities cannot be
calculated, as in the empirical data of Fig. 1.

The next parameter that can be directly related to an em-
pirical observable quantity, namely, the upstream velocity of
the downstream front of a wide jam, is the deceleration prob-
ability p0.

We used the calculation of the density autocorrelation
function in the congested state of a system that was initial-
ized with a mega jam for the determination of the velocity of
the jam front. One obtains an average jam velocity of
2.36 cells/ss=̂12.75 km/hd for p0=0.5. This jam velocity is
independent of the traffic condition and holds for all densi-
ties in the congested regime. Thus, although metastable traf-
fic states can be achieved by the finer discretization(see
Appendix A) the slow-to-start rule is necessary for the re-
duction of the jam velocity from about 20.45 to 12.75 km/h.
This velocity is also in accordance with empirical results
[32].

In Fig. 22 the cross covarianceccsJ,rd of the flow and the
local measured density for different traffic states is shown. In
the free flow regime the flow is strongly coupled to the den-

sity indicating that the average velocity is nearly constant.
Also for large densities, when wide jams are measured, the
flow is mainly controlled by density fluctuations. In the mean
density region there is a transition between these two re-
gimes. At cross covariances in the vicinity of zero the fun-
damental diagram shows a plateau. Traffic states with
ccsJ,rd<0 were identified as synchronized flow[22]. In the
further comparison of our simulation with the corresponding
empirical data we used these traffic states for synchronized
flow data and congested states withccsJ,rd.0.7 for data of
wide jams. The results show that the approach leads to real-
istic results for the fundamental diagram and that the model
is able to reproduce the three different traffic states.

To characterize the three traffic states, we calculated the
autocorrelation of the flow, the density as well as the velocity
for different global densities.

In free flow, the density and the flow show the same os-
cillations of the autocorrelation function, whereas, the speed
is not correlated in time.

In contrast to the NaSch model, the autocorrelation func-
tion at large densities shows a strong coupling of the flow
and the velocity. Now, the velocity of a car not only depends
on the gap but also on the density, so that the flow and the
velocity are mainly controlled by the density(Fig. 23).

Next we compare the empirical data and simulation re-
sults on a microscopic level.

In Fig. 24 the simulated time-headway distributions for
different density regimes are shown.

Due to the discrete nature of the model, large fluctuations
occur and the continuous part of the empirical distribution
shows a peaked structure at integer-numbered headways for
the simulations. In the free flow state extremely small time-
headways have been found, in accordance with the empirical
results. This is qualitatively different from the other CA mod-
els with parallel update scheme.

FIG. 22. Cross correlation of the flow and the density in free
flow and congested traffic for different densities and homogeneous
initialization.

FIG. 23. Autocorrelation function of the density, the velocity
and the flow forr=67 vehicles/km with a random initialization.
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Nevertheless, for our standard simulation setup at small
densities the statistical weight of these small time headways
is significantly underestimated. This apparent failure of the
model is the result of the chosen simulation setup. If we
introduce different types of cars and open boundary condi-
tions, we observe a smooth time headway distribution, which
is in good agreement with the empirical data(see Fig. 25).

Therefore we can state that properties such as the width as
well as the smoothness of the time-headway distribution are
strongly dependent on the choice of the simulation setup. In
contrast, the short-time cut off of the distribution is model
dependent. Time headways shorter than the chosen unit of
time are in case of a parallel update only observed if antici-
pation effects are included. The actual value of the cut off for
a given unit of time is tuned by the parameterdsecurity. The
results for congested flow, however, are not influenced by
different types of vehicles.

The ability to anticipate the predecessor’s behavior be-
comes weaker with increasing density so that the weight of
the small time headways is reduced considerably in the syn-
chronized state. The maximum of the distribution can be
found in the vicinity of 1 s in accordance with the empirical
data, the density dependence, however, cannot be repro-
duced.

Instead, with increasing density the maximum at a time of
1 s (in the NaSch model the minimal time headway is re-
stricted to 1 s because of rule 2) becomes more pronounced.
This result is also due to the discretization of the model that
triggers the spatial and temporal distance between the cars.
Because of the exponential decay of the waiting time distri-
bution of cars leaving a jam, the peak at a time of 1 s is the
most probable in the time-headway distribution.

The OV curve of our model approach shows an excellent
agreement with empirical findings. For densities in the free
flow regime it is obvious that the OV curve(Fig. 26) deviates
from the linear velocity-headway curve of the NaSch model.
Due to anticipation effects, smaller distances occur, so that
driving with vmax is possible even within very small head-
ways. This strong anticipation becomes weaker with increas-
ing density and cars tend to have smaller velocities than the
headway allows so that the OV curve saturates for large dis-
tances.

The saturation of the velocity, which is characteristic for
synchronized traffic, was not observed in earlier approaches.
The value of the asymptotic velocities can be adjusted by the
last free parameterpb. The OV curve in the synchronized
regime is independent of the maximum velocity and is only
determined by the dynamical behavior of the model.

Next, we calculated the autocorrelation of the time series
of the single-vehicle data(Fig. 27). Note, that the data of the
free flow state was collected in an open system with 20% of
slow cars withvmax=15 cells/s=81 km/h. In thefree flow
regime the data shows a strong coupling of the spatial and
temporal headway that supports the results obtained by ag-
gregated data(J~Dt−1 and r~Dx−1). In contrast, the auto-
correlation of the velocity shows a slow asymptotic decay.
This supports the explanation of Ref.[22] that the slow de-
crease for small distances is due to small platoons of fast cars
led by one slow car. In the synchronized state, longer corre-
lations of the speed and the spatial headways can be ob-
served. So, similar to the free flow regime, in the synchro-
nized regime platoons of cars appear that are moving with
the same speed[24].

VI. THE MODEL OF KERNER, KLENOV, AND WOLF

The most recent modeling approach we include in our
comparison was introduced by Kerner, Klenov, and Wolf

FIG. 24. Time-headway distribution for different densities in
free flow (top) and in the synchronized state(bottom).

FIG. 25. Time-headway distribution in the free flow regime of a
system with open boundary conditions and different types of ve-
hicles. The maximal velocity of the slow vehicles was set to as
vmax=108 km/h=20cells/s and of the fast vehicles asvmax

=135 km/h=25cells/s. We considered 15% of the vehicles as fast
vehicles(note that these are vehicles that disregard the speed limit).
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(KKW ) [21]. This model is a fully discretized version of the
space-continuous microscopic model introduced by Kerner
and Klenov[58]. It combines, as the BL model, elements of
car-following theory with the standard distance-dependent
interactions. It is defined by an update rule including a de-
terministic and a stochastic part. The deterministic rule,
which readsst, t1, t+1d:

vnst1d = maxf0,minhvmax,vsafestd,vdesstdjg s6d

is applied first. The three velocities appearing are the free
flow or maximal speed of the carsvmax, the safe velocity
vsafestd and finally the desired velocityvdesstd. vsafestd is the
velocity which guarantees collision-free motion and is sim-
ply the gap to the preceeding car,vsafestd=dnstd. It is the
introduction of vdesstd which makes the difference to the
NaSch model. The velocityvdesstd is given by

vdesstd = H vnstd + a for dn . D„vnstd… − l ,

vnstd + Dstd for dn ø D„vnstd… − l .
s7d

The calculation ofvdesstd replaces the acceleration step of the
NaSch model by a more complex rule. Herel is the length of
the vehicles andDsvd a synchronization distance. The au-
thors suggested a linear

Dsvd = D0 + kv, s8d

and a quadratic form

Dsvd = D0 + v + bv2 s9d

for the velocity dependent interaction range. Apart from the
task of choosing an appropriate function, two model param-
eters are introduced in both cases. So far no systematic
analysis of traffic data exist which leads empirically based
parameter values or the functional forms. This could be
done, at least in principle, by an extensive analysis of
floating-car measurements. Moreover, the results in Ref.[21]
show that the results agree at least qualitatively for both
functions(8) and (9) which have been considered.

The interaction range has been introduced as a synchroni-
zation radius, i.e.,Dsvd is the distance which separates free
driving cars from cars which already adjust their velocity
according to the vehicle ahead. For large distances to the
vehicle ahead,dn.D(vnstd)− l, the calculation ofvdes is
equivalent to the acceleration step of the NaSch model. In-
side the enlarged interaction radius, however,vdes depends
on the velocity of the leading car. ExplicitlyDstd is given by

Dstd = 5− b if vnstd . vn+1std
0 if vnstd = vn+1std
a if vnstd , vn+1std.

s10d

This means that within the interaction radius drivers tend to
adapt their velocity to the vehicle ahead.

The second update rule is stochastic. It is given by

vnst + 1d = maxh0,minhvnst1d + hn,vnst1d + a,vfree,vmaxjj,

s11d

The stochasticity is included in the termvnst1d+hn, while
the others are in order to guarantee that the new velocity is
below the speed limit, leads to no collisions and is in accor-
dance with the chosen acceleration capacityan of the cars.
The stochastic variableh can take the following values:

FIG. 26. The OV function for different densities in the free flow
and congested regime.

FIG. 27. Autocorrelation of the speed and of the spatial and
temporal headway for free flowing vehicles(top) and for a synchro-
nized state(bottom). In order to obtain a slow decay of the speed
autocorrelation function in the free flow regime the simulation was
performed on a open system with 20% of slow carssvmax

slow

=15 cells/s=81 km/h,vmax
fast =20 cells/s=108 km/hd.
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h = 5− 1 if r , pb,

1 if pb ø r , pb + pa,

0 otherwise.

s12d

Both probabilitiespa andpb introduced here are velocity de-
pendent. One has

pbsvd = Hp0 if v = 0

p if v . 0
s13d

with p0.p. The stochastic braking is analogous to the slow-
to-start rule known from the VDR model. Contrary the sto-
chastic acceleration is a new feature of the model which
weakens the synchronization of speeds as it applies to cars
which reduced or kept their velocity although safe driving
would have allowed a larger velocity. The functionpasvnd is
explicitly given by

pasvd = Hpa1 if v , vp

pa2 if v ù vp,
s14d

wherevp, pa1 and pa2,pa1 are adjustable parameters of the
model. The different probabilities have to be chosen such
that pa+pbø1 is fulfilled for any velocity. The velocity up-
date is completed by this second stochastic rule and is fol-
lowed by a parallel update of the positions.

For further illustration of the update rules we compare
them briefly to the BL model. Both models include the up-
date rules of the VDR model and enlarge the interaction
radius of the drivers within a velocity dependent interaction
range. The driving strategy within this larger interaction
range is, however, different. While the BL model introduces
an event driven interaction model, the KKW is more car-
following like. Another important difference is that the ve-
locity anticipation is not included in the approach of Ref.
[21], although such an extension is possible[59].

Figure 28 shows the fundamental diagram of the KKW
model, obtained by local measurements flux and density in a
periodic system. Compared to the other models we analyzed
one observes two remarkable differences: In synchronized
traffic the flow has a local minimum for a density of
30 vehicles/km and reaches a second maximum for a density
of 40 vehicles/km. The origin of this structure lies in the
stochastic acceleration of cars which reduces considerably
the probability to form a jam. A second important feature is
the complex structure of the fundamental in the presence of
jams. For very high global densities one observes all three
traffic states at the same time and no strict phase separation
as, e.g., in case of the VDR model.

Measurements of the OV function(Fig. 29) show that the
microscopic structure of the model differs from the empirical
findings. In free flow traffic small headways are almost not
observed and the maximum speed is reached at larger dis-
tances than in real traffic. This indicates that, compared to
real traffic, the repulsive part of the car-car interactions is
overemphasized. While the differences between empirical
data and model results might be reduced for a different set of
model parameters, the model results for synchronized traffic
differ even qualitatively. In real traffic one observes for a
given density a crossover from a density independent form of

the OV function at small distances to an asymptotic velocity
for larger distances(see Fig. 4) which depends on the den-
sity. This is not reproduced by the KKW model, where a
distance independent average velocity is observed only in a
narrow range of spatial headways, if it is observed at all.

The comparison between empirical and simulation results
of the time-headway distribution indicates that the model
largely fails to reproduce the empirical results obtained for
free flow traffic. This is, as discussed before, partly a results
of the simplified setup we used for our simulations. A much
better agreement would be obtained if we consider a realistic
distribution of maximal velocities. But even in this case one
is left with a problem. The lack of velocity anticipation leads
to a sharp cut off of the time-headway distributions for times
less than one unit of time, i.e., 1 s. Although the position of
the cut off can be tuned by varying the temporal discretiza-
tion, it must be noted that this still does not lead to the right
functional form, as the maximum of the time headway dis-
tribution is located at the minimal observed time headway.
This again confirms necessity of velocity anticipation for the
reproduction of the empirical findings at short time head-
ways.

Summarizing the CA model introduced by Kerner, Kle-
nov, and Wolf reveals three distinguishable traffic states, as
observed in empirical studies. The reproduction of the em-
pirical time-headway distribution and fundamental diagram
is partly satisfying and could be easily improved by the in-
troduction of velocity anticipation. The most important dif-
ferences between empirical findings and model results con-
cern the OV function. This indicates that the microscopic

FIG. 28. Local fundamental diagram of the KKW model for the
following set of parameters: The length of a cell is set to 0.5 m.
Each car occupiesl =15 cells. The maximal velocity is given by
vmax=108 km/h=60cells/Dt, whereDt=1 s. Also the other model
parameters are set to the values suggested in Ref.[21]: a=b=1,
D0=60, k=2.55. The parameters determining the stochastic part of
the model take the values:p=0.04, p0=0.425, pa1=0.2, pa2

=0.052, andvp=28.
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structure of the model states does not match the real structure
of highway traffic. We also believe that this disagreement is
due to the very nature of the car-car interactions in the KKW
model and cannot be resolved by a better choice of the model
parameters.

VII. COMPARISON OF THE FUNDAMENTAL DIAGRAMS

The comparison of the models presented so far is based
on local measurements of inductive loops. Therefore, the
model parameters have been chosen in order to allow the
best possible accordance with the empirical setup. One of the
main disadvantages of local measurements is that the de-
tected values of the flow and the velocity strongly fluctuate,
whereas, density cannot even be defined locally in a strict
sense. However, in traffic flow simulations it is possible to
get averaged quantities that are representative for a given
density. Therefore, in this section global measurements of the
flow and the density of the various models are given for a
typical set of parameters in order to demonstrate the charac-
teristics of the approaches. However, since density can be
calculated exactly, the distinction between the traffic states is
omitted.

Density, flow, and velocity can be measured globally in
the following way: The densityrglobal can directly be ob-
tained by counting the numberN of vehicles on a highway
section of lengthL via

rglobal=
N

L
. s15d

The average velocityvglobal is then defined as

vglobal=
1

N
o
n=1

N

vn s16d

with the velocityvn of vehiclen. Again, the hydrodynamical
relation allows for the calculation of the flow

Jglobal= rglobalvglobal=
1

L
o
n=1

N

vn. s17d

A typical fundamental diagram consists of a linear free
flow branch that intersects with an almost linear congested
branch. As one can see in Figs. 30 and 31 nearly all dis-
cussed models are able to reproduce this basic characteris-
tics. The fundamental diagram of the HS model, however,
exhibits two distinct maxima. The first maximum is simply
given by the transition from free flow to congested traffic.
The second maximum is a consequence of the chosen OV
curve. Since vehicles with 3ødø5 have to drive with a
velocity of 2, the flow increases linearly for densities well
above a certain density until the average gap is smaller than
3 cells. Moreover, due to the OV curve the vehicles behave
deterministically and choose their velocity according to the
gap, i.e.,v=d. As a result of a nearly uniform gap distribu-
tion, effectively speed limits are applied for certain density
intervals which are reflected by the occurrence of different
slopes in the congested branch of the fundamental diagram.

This behavior is typical for models with modified distance
rules and can also be found in the ER model. Since the
choice of the gap-velocity matrix in the ER model leads to
speed limits for different density regimes, the free flow
branch shows two different slopes like in the local measure-
ments. Even more severe is the lack of a distinct maximum
in the fundamental diagram. This is a consequence of the

FIG. 29. OV function in free flow and congested traffic of the
KKW model for different densities. The same set of parameters as
in Fig. 28 has been used.

FIG. 30. Comparison of the global fundamental diagram of the
NaSch model, the VDR model, the TOCA, and the ER model for
typical parameter values and a homogeneous initialization.
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ordered sequential update of the ER model. It is possible that
jams can also move in downstream direction, thus leading to
many small jams with a large flow.

Measurements of empirical data have revealed that the
outflow from a jam is reduced considerably compared to the
maximum possible flow. As a result, metastable free flow
states exist and hysteresis effects can be observed in the fun-
damental diagram[57].

Obviously, this is the case for the VDR model, the TOCA
model as well as for the BL and KKW models while the
maximum possible flow of the NaSch model is as large as
the outflow from a jam.

Since the deceleration probability in the VDR model was
chosen very smallspdec=0.01d the stability of the homoge-
neous branch of the fundamental diagram is very large. In
contrast, once a jam has formed above a certain threshold
density the large deceleration probability for the vehicles at
rest is responsible for the reduced outflow from a jam. As a
result, the system is phase separated into a region of free
flow and a compact moving jam. The capacity drop can sim-
ply be tuned by varying the difference between the two de-
celeration parameters. In analogy to the VDR model, in the
TOCA model only vehicles withvød decelerate with the
probabilityp. Thus, vehicles driving withvmax andd.v lead
to a stable high flow branch in the fundamental diagram up
to a density of 1/svmax+1d. However, the congested regime
of the TOCA model reveals the existence of two different
slopes in the fundamental diagram. For densities larger than
1/2 vehicles have on average a gap of less than one cell.
Since the vehicles decelerate with a large probability, but do
accelerate with a rate smaller than one, the system now con-
tains only one large jam whose width is comparable to the
system size.

Like in the VDR model, in the BL model the high flow
states can simply be controlled by the deceleration parameter
p0 for vehicles at rest. However, in the congested regime two
distinct slopes of the fundamental diagram become visible.
The density at which the slope changes and the shape of the
fundamental diagram can be triggered by the parametersh
and pb that determine the interaction between vehicles with
d.v. In particular, the higherh the smaller the densityrmax
of the maximum flow(Fig. 32, top). For largeh the funda-
mental diagram converges very fast, so that the fundamental
diagram for values larger thanh=8 are identical. Moreover,
even small values ofpb have a strong influence on the flow.
The high flow branch of the fundamental diagram(Fig. 32,
bottom) and the densityrmax of maximum flow are reduced.
For large values the congested branch of the fundamental
diagram shows two different slopes. The higherpb, the
smaller the density at which the slope changes.

A. Minimal model?

The BL model improves, compared to the other models
we discussed in this work, the agreement with the empirical
data, especially in the case of the OV curve. Nevertheless,
this is only possible with the application of a variety of new
update rules. Therefore, it remains an open question whether
this set of update rules can be reduced.

In the top part of Fig. 33 we successively dropped the
extensions of the model. First, the slow-to-start rule has been
omitted. Without the slow-to-start rule the model lacks the
ability of a reduced outflow from a jam and the number of
large compact jams is reduced so that the flow increases. As
a further reduction of the model, anticipation is switched off.
This leads to a decrement of the flow at densities larger than
the density of maximum flow. Now headways smaller than
the velocity are not possible, which manifests in the OV

FIG. 31. Comparison of the global fundamental diagrams of the
HS model, the BL model, and the KKW model with that of the
NaSch model for typical parameter values and a homogeneous
initialization.

FIG. 32. Fundamental diagram for different horizonsh (top) and
for differentpb (bottom). All simulations have been performed with
an homogeneous initialization.
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curve at small densities. For large densities the anticipation
of the predecessors velocity becomes more and more diffi-
cult until anticipation is no longer applicable. Therefore, the
differences between the curves with and without anticipation
vanishes.

Applying the braking rule as the only extension leads to a
plateaulike fundamental diagram compared to the NaSch
model. Additionally, the flow is reduced dramatically. It is
the brake rule that changes the shape of the fundamental
diagram.

In bottom part of Fig. 33 the same successive reductions
of the rules have been applied to the model without braking
rule. Neither the anticipation, nor the slow-to-start rule ap-
plied as a single extension or in combination are able to
change the shape of the fundamental diagram.

Considering the empirical fact that small time headways
and a reduced outflow from a jam exist, the braking rule is
the only new extension of the NaSch model. This new rule
turns out to be crucial for the correct generation of the OV
curves and the occurrence of synchronized traffic.

So the set of rules chosen for the BL model is minimal in
the sense that all are needed to obtain a satisfactory agree-
ment with empirical data. We also believe that is essential to
combine car-following-like behavior and distance based
rules. In case of the BL model the velocity adjustment is
event driven, i.e., the drivers react to braking cars in the
upstream flow. It is not excluded that the same can be
achieved with a different, but simpler set of rules. This is
highly desirable in order to reduce the complexity of the
model and the number of parameters. However, it is cur-
rently unclear whether there is a similarly simple physical
mechanism behind the formation of synchronized traffic as it
is behind the formation of wide jams. For the latter, the re-
duction of the outflow from a jam below the maximal flow is

essential which can be easily achieved by any kind of slow-
to-start rule.

VIII. DISCUSSION

The intention of our investigation was to single out the
models which are able to describe the empirically observed
microscopic structure of traffic flow correctly. It is well
known that many quite different models exist which repro-
duce the macroscopic properties(e.g., global fundamental
diagrams or spontaneous jam formation) rather accurately
[1–3]. However, recently single-vehicle data have become
available. A thorough analysis of these data has allowed for a
deeper understanding of the microscopic properties which
now should be incorporated into the different modeling ap-
proaches.

We have suggested a test scenario based on the compari-
son of computer simulations in a realistic setup with empiri-
cal data obtained using stationary inductive loops. An impor-
tant point is that we have used only one fixed set of model
parameters which has been determined by comparison with
empirical data, e.g., with the free-flow velocity. Therefore we
are able to determine whether a model is able to describeall
traffic situations consistently without the necessity to tune
parameters according to the state.

Our focus was on cellular automata models[1] and espe-
cially variants of the Nagel-Schreckenberg model[10,11]
which can be considered as a minimal CA model for traffic
flow. Our comparison has revealed differences between the
models on a macroscopic scale which become even more
pronounced on a microscopic level of description.

We have seen that models with modified distance rules,
such as the ER and the HS model, have problems on a mac-
roscopic level. They are not able to produce a realistic(glo-
bal) fundamental diagram and it is difficult to make these
models intrinsically crash free.

The NaSch model, the VDR model, the TOCA model and
the brake light version of the NaSch model reproduce the
fundamental diagram quite well. This is already sufficient for
many applications. In urban traffic, for example, the dynam-
ics of the vehicles between two intersections is predomi-
nantly determined by traffic lights. The correct description of
queues at cross roads, therefore, only requires the existence
of two distinct traffic phases, namely, free flow and con-
gested traffic.

More realistic applications of traffic flow simulations,
e.g., that allow the tracing of a jam, need a more detailed
description of the jamming mechanisms. For the correct re-
production of the upstream propagation of the downstream
front of a jam it is necessary to reduce the outflow from a
jam and thus to facilitate metastable states. Here, the VDR
model, the TOCA model and the BL model allow the exis-
tence of states with a flow considerably larger than the out-
flow from a jam.

Differences between the models can be observed in the
jam dynamics. While the road in the VDR model is separated
into a region with free flow and a compact jam that propa-
gates upstream, the peculiarities of the update rules of the
TOCA model lead to a jam that covers the whole system.

FIG. 33. Successive extension of the NaSch model with brake
lights (top) and without brake lights(bottom). Note that the system
is initialized in an homogeneous state to generate also high flow
states.
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Large compact jams appear also in the BL model since the
slow-to-start rule of the VDR model is included. However,
brake lights are responsible for the generation of synchro-
nized regions, i.e., regions of vehicles that are moving with a
small velocity but high flow.

This difference in the vehicle dynamics becomes most
obvious in the analysis of locally measured single-vehicle
data. On a microscopic level of description the main diffi-
culty lies in the reproduction of small time headways that
can be found at low densities in free flow and in the density
dependence of the velocity-distance relationship. This impor-
tant behavior of the OV curve demonstrates that the driving
strategy of a vehicle depends strongly on the traffic state
while the vehicles in most modeling approaches adjust their
velocity directly according to their headway only, and there-
fore by the density.

As a first step towards a realistic modeling of highway
traffic the interaction horizon of the original NaSch model
has be to enhanced such as in the TOCA, the ER, and the HS
model. However, in the TOCA and the HS model the cell
length is not decreased which is necessary in order to repro-
duce realistic acceleration values. Therefore, the benefits of
the increased interaction horizon do not become visible.
Moreover, vehicles do react in astatic manner to a stimulus
within the horizon. In particular, the velocity gap matrix used
in the ER model just leads to speed limits for certain densi-
ties.

A further step is the incorporation of the idea of event-
driven anticipation. In contrast to the static reaction de-
scribed in the previous paragraph it allows for adynamical
responsethat will enable the vehicles to adjust their velocity
to the actual traffic situation regardless of the traffic density
in front. This idea is realized in the BL and KKW models. It
turns out, that in case of the BL model only the introduction
of brake lights, which allow the timely adjustment of the
velocity to the downstream speed and can propagate in up-
stream direction, allows the reproduction of synchronized
traffic. Of course, there might alternative ways to model syn-
chronized traffic, but we believe that long-ranged event-
driven interactions between the vehicles are essential.

The use of an effective gap by means of velocity antici-
pation reduces velocity fluctuations in free flow and leads to
platoons of vehicles driving bumper-to-bumper. It is also
worth mentioning that this effect is of special importance in
multilane traffic as shown in Ref.[47].

We have seen that the BL model allows to overcome the
problems in the reproduction of synchronized traffic encoun-
tered in the other modeling approaches. It reproduces quali-
tatively the observed behavior. Even the quantitative agree-
ment is in most cases very good although the test scenario
has neglected effects such as disorder(different vehicle and
driver types) and boundary conditions. In contrast, in most
other approaches the discrepancies between empirics and
model behavior can already be seen on a qualitative level. In
particular, in the simulations of the BL model three qualita-
tively different microscopic traffic states are observed in ac-
cordance with the empirical results. The deviations of the
simulation results are mainly due to simple discretization
artifacts which do not reduce the reliability of the simulation
results. We also want to stress the fact that the agreement is

on a microscopic level. This improved realism of the BL
model leads to a larger complexity of the approach compared
to other models of this type. Nevertheless, due to the dis-
creteness and the local car-car interactions, very efficient
implementations should still be possible. Moreover, the ad-
justable parameter of the model can be directly related to
empirical quantities. The detailed description of the micro-
scopic dynamics will also lead to a better agreement of simu-
lations with respect to empirical data for macroscopic quan-
tities, e.g., jam-size distributions. Therefore we believe that
this approach should allow for more realistic microsimula-
tions of highway networks.

Our results show that the CA models for highway traffic
have reached a very high degree of realism. The most com-
plete description of the empirical findings is by means of the
BL model. This is not surprising since the model has been
designed in order to reproduce data of local measurements.
But anyhow it is important to know which aspects of real
traffic are described by a certain model, because in the end
the aspired accordance of a model with empirical observa-
tions strongly depends on the goal of the particular applica-
tion. So it is useful to use oversimplified model approaches
in order to concentrate on particular aspects of traffic flow
phenomena[60].

Finally we want to emphasize that the results obtained
from modeling approaches also help to improve our under-
standing of the general principles of traffic flow. We have
seen the complexity of human behavior becomes more im-
portant if one wants to reproduce its properties more accu-
rately. In the simplest case only the accident avoidance is
sufficient to reproduce the basic properties, such as free flow
and jammed phases. For synchronized traffic, however, this
is not sufficient. Here the results indicate that the dependence
of the driving strategy on the traffic state becomes essential.
Drivers do not only want to avoid crashes, but also drive
comfortably, e.g., by avoiding unnecessary large acceleration
or deceleration. This has been emphasized in Ref.[20] and is
implemented in slightly different form in the BL and KKW
models.

The next step would be the inclusion of other modeling
approaches, not only cellular automata models. Using a dif-
ferent test scenario this has recently been done by Brockfeld
and Wagner[70]. They have compared travel time for vari-
ous models(e.g., NaSch, VDR, and OVM) with empirical
data. Using methods from optimization theory to determine
the best parameters it was surprisingly found that all models
produce similar results that are not in good agreement with
the data. The reason for this is not understood. However, the
performance of more sophisticated models(such as BL and
KKW ) has not been investigated in Ref.[70].
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APPENDIX A. CONTINUOUS LIMIT
OF THE NASCH MODEL

The adjustment of the acceleration of the vehicles in the
original NaSch model to empirical values(that are about
1 m/s2 [50]) requires the decrement of the length of a cell
(see also Refs.[13,61,62]).

This, however, entails an increment of the maximum pos-
sible velocity for a given fixed absolute value ofvmax (about
100 km/h throughout this paper).

It turns out, that already the increment of the number of
states a vehicle is allowed to adopt leads to hysteresis effects
of the flow. In particular, the flow can be enhanced in a
certain density regime by initializing homogeneously the ve-
hicles on the lattice compared to a pure random initial setup.
As a result, in the limitvmax→` [61–64] the system exhibits
metastable states(Fig. 34) with a flow increasing propor-
tional to vmax, but with a rapidly decreasing lifetime.

Unfortunately, increasing onlyvmax leads to a significant
decrement of the density of maximum flow. Thus, in order to
keep the maximum velocity fixed, the limitvmax→` with
vmax/ l =const with the lengthl of a cell has to be considered.
Figure 35 shows fundamental diagrams for different finer
discretization. Since the acceleration step of a vehicle is de-
creased considerably, velocity fluctuations and vehicle inter-
actions in free flow are reduced. A random initialization of
the system does not allow the high flow states so that hys-
teresis can be observed. On one hand, with increasing decel-
eration probabilitypdec the stability of the homogeneous flow
branch of the fundamental diagram decreases, but on the
other hand the capacity drop increases.

Unlike in the VDR model, the origin of the high flow
states cannot be traced back to a reduction of the outflow
from a jam but to the stability of the free flow state.

A system with lengthl and deceleration probabilitypdec
behaves like a NaSch model with cell length 1 and a consid-
erably smaller deceleration probability of aboutpdec/ l. In
contrast, in the congested regime the influence of the cell
length can be neglected and a system with decreased cell
length behaves analogously to the NaSch model with the
same deceleration probability, e.g., the dynamics of the ve-
hicles in the congested regime of the NaSch model is main-
tained[unlike in the cruise control limit of the NaSch model
[65] where cars that are driving withvmax have a deceleration
probability pdecsvmaxd=0].

For realistic traffic simulations it is important that the
high flow states are metastable for finite systems in the sense
that the probability for a perturbation that leads to a collapse
of the flow is only very small. Nevertheless, in the thermo-
dynamic limit the high flow states become unstable so that
the homogeneous branch of the fundamental diagram van-
ishes.

In order to study the phase transition we introduced an
order parameter that exhibits a qualitatively different behav-
ior within the two phases. Because of the mass conservation
in the NaSch model with periodic boundary conditions we
observed the densityh of jammed cars:

h =
1

L
o
i=1

N

dvi,0
. sA1d

In the NaSch modelh decays exponentially in the vicinity of
the transition[66] whereas a sharp drop occurs in the VDR
model [67]. Due to the finite braking probability in the
NaSch model cars with zero velocity do exist even at densi-
ties below the transition density. In contrast, due to the small

FIG. 34. NaSch model with differentvmax and homogeneous
initialization.

FIG. 35. Fundamental diagram of the NaSch model withpdec

=0.5 for different discretizations and homogeneous initialization.
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deceleration probabilitypdec in the VDR model one macro-
scopic jam forms only at densities above the transition den-
sity. With increasingpdec the transition smears out.

Analogously to the VDR model, the order parameter of
the NaSch model with a finer discretization(Fig. 36) shows a
transition from zero to a linear dependence of the density.
With increasing system size the high-flow states become un-
stable and the jump in the order parameter vanishes which
demonstrates the metastability of the high flow states.

APPENDIX B. ACCIDENTS IN THE HS MODEL:
A STATIC CRITERION

In order to ensure collision-free motion in a model with
parallel update the condition

vnst + 1d ø dn − 1 +vn+1st + 1d sB1d

must always be fulfilled, i.e., the new velocityvnst+1d of a
car has to be smaller than the numberdn−1 of empty cells in

front plus the numbervn+1st+1d of cells the preceding car
moves in the next time-step. Eq.(B1) has to be comple-
mented by the inequality 0øvnst+1d that ensures that ve-
hicles do not move backwards.

Consider now the case where the vehicle approaches the
end of a jam, i.e., the preceding car is standing and will not
move in the next time stepfvn+1st+1d=0g. Using the accel-
eration rule Eq.(4), condition Eq.(B1) can be rewritten as

vnst + 1d + blfVoptsdnd − vnst + 1dgc ø dn − 1. sB2d

In order to be intrinsically free of collisions, condition(B2)
has to be satisfied for alld and allv. For l=1 the inequality
(B2) is always satisfied ifVoptsdndødn−1. For generall,
however, this is not the case.

This can easily be verified by initializing the system in a
compact jam. In our simulations jamsalways occurred for
global densities larger than 20 vehicles/km when the first car
arrived at the jam. This simulation result has to be discussed
in the context of the empirical results of the jam dynamics.
Empirically one observes quite often a jam surrounded by
free flow traffic. This includes the fact that cars approach the
upstream front of jams with a rather large velocity. Unfortu-
nately for the HS model these kind of configurations lead to
accidents, which is in sharp contrast to the real situation.

But how does one have to choosel for a given OV func-
tion? Using the inequalitiesxù bxc.x−1 (for x,0) one can
derive sufficient conditions on the sensitivity parameterl for
the model to berealistic in the sense that no collisions occur

l . maxH d − v − 1

Voptsdd − v
:v . VoptsddJ , sB3d

and vehicles do not move backwards

l ø minH v
v − Voptsdd

:v . VoptsddJ . sB4d

We checked these two conditions for the OV function given
in Ref. [18]. It turns out that for the chosenVopt function l
=1 is the only possible choice. The upper limit forl holds
for a quite general class of OV functions, i.e., it is the upper
limit for all OV functions havingVopt=0 for some value of
the gap.
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